OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..100
Connor Ahlbach, Jeremy Usatine and Nicholas Pippenger, Barred Preferential Arrangements, Electron. J. Combin., Volume 20, Issue 2 (2013), #P55.
FORMULA
E.g.f.: 1/(2 - exp(x))^3 (see the Ahlbach et al. paper, Theorem 4). - Vincenzo Librandi, Jun 18 2013
a(n) = Sum_{i=0..n} S2(n,i)*i!*binomial(2+i,i), where S2 is the Stirling number of the second kind (see the Ahlbach et al. paper, Theorem 3). [Bruno Berselli, Jun 18 2013]
G.f.: 1/Q(0), where Q(k) = 1 - 3*x*(k + 1) - 2*x^2*(k + 1)*(k + 3)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 02 2013
G.f.: 1/(1 + x)/Q(0,u), where u = x/(1 + x), Q(k,u) = 1 - u*(3*k + 4) - 2*u^2*(k + 1)*(k + 3)/Q(k+1,u); (continued fraction). - Sergei N. Gladkovskii, Oct 03 2013
a(n) ~ n! * n^2 /(16*(log(2))^(n + 3)) * (1 + 3*(1 + log(2))/n). - Vaclav Kotesovec, Oct 08 2013
Conjectural g.f. as a continued fraction of Stieltjes type: 1/(1 - 3*x/(1 - 2*x/(1 - 4*x/(1 - 4*x/(1 - 5*x/(1 - 6*x/(1 - (n+2)*x/(1 - 2*n*x/(1 - ... ))))))))). - Peter Bala, Aug 27 2023
From Seiichi Manyama, Nov 19 2023: (Start)
a(0) = 1; a(n) = Sum_{k=1..n} (2*k/n + 1) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 3*a(n-1) - 2*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). (End)
MATHEMATICA
Range[0, 20]! CoefficientList[Series[(2 - Exp@x)^-3, {x, 0, 20}], x] (* Vincenzo Librandi, Jun 18 2013 *)
PROG
(Magma) m:=2; [&+[StirlingSecond(n, i)*Factorial(i)*Binomial(m+i, i): i in [0..n]]: n in [0..20]]; // Bruno Berselli, Jun 18 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 13 2013
EXTENSIONS
More terms from Vincenzo Librandi, Jun 18 2013
STATUS
approved