OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..300
Max A. Alekseyev and T. Berger, Solving the Tower of Hanoi with Random Moves. In: J. Beineke, J. Rosenhouse (eds.) The Mathematics of Various Entertaining Subjects: Research in Recreational Math, Princeton University Press, 2016, pp. 65-79. ISBN 978-0-691-16403-8
Index entries for linear recurrences with constant coefficients, signature (8,-15).
FORMULA
G.f.: 3*x/((1-5*x)*(1-3*x)). - Vincenzo Librandi, Jun 12 2013
a(n) = 8*a(n-1) -15*a(n-2) for n>1, a(0)=0, a(1)=3. - Vincenzo Librandi, Jun 12 2013
MATHEMATICA
CoefficientList[Series[3 x / ((1 - 5 x) (1 - 3 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 12 2013 *)
Table[3 (5^n - 3^n)/2, {n, 0, 25}] (* Bruno Berselli, Jun 12 2013 *)
PROG
(Magma) [(3/2)*(5^n-3^n): n in [0..30]]; // Vincenzo Librandi, Jun 12 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 12 2013
STATUS
approved