login
a(n) = n*(15*n-11)/2.
5

%I #28 Nov 02 2024 16:08:20

%S 0,2,19,51,98,160,237,329,436,558,695,847,1014,1196,1393,1605,1832,

%T 2074,2331,2603,2890,3192,3509,3841,4188,4550,4927,5319,5726,6148,

%U 6585,7037,7504,7986,8483,8995,9522,10064,10621,11193,11780,12382,12999,13631,14278

%N a(n) = n*(15*n-11)/2.

%C Sum of n-th 9-gonal (nonagonal) number and n-th 10-gonal (decagonal) number.

%C Sum of reciprocals of a(n), for n>0: 0.614629940137818703272919217222307...

%H Bruno Berselli, <a href="/A226489/b226489.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F G.f.: x*(2+13*x)/(1-x)^3.

%F a(n) + a(-n) = A064761(n).

%t Table[n (15 n - 11)/2, {n, 0, 50}]

%t CoefficientList[Series[x (2 + 13 x) / (1 - x)^3, {x, 0, 45}], x] (* _Vincenzo Librandi_, Aug 18 2013 *)

%o (Magma) [n*(15*n-11)/2: n in [0..50]];

%o (Magma) I:=[0,2,19]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..45]]; // _Vincenzo Librandi_, Aug 18 2013

%o (PARI) a(n)=n*(15*n-11)/2 \\ _Charles R Greathouse IV_, Oct 07 2015

%Y Cf. A001106, A001107.

%Y Cf. numbers of the form n*(n*k-k+4)/2, this sequence is the case k=15: see list in A226488.

%K nonn,easy,changed

%O 0,2

%A _Bruno Berselli_, Jun 09 2013