%I #9 Feb 16 2025 08:33:19
%S 1,3,2,2,1,2,1,4,2,2,1,3,1,2,1,4,1,3,2,2,1,4,1,2,1,2,1,4,2,6,2,2,1,3,
%T 3,5,1,2,1,4,1,2,2,1,3,3,2,2,1,4,1,1,4,1,2,2,1,2,1,4,2,2,1,1,4,1,1,4,
%U 2,2,1,3,3,2,2,2,2,1,1,3,1,2,1,4,1,2
%N Table read by rows: run lengths in rows of A070950.
%C T(n,2*k) = numbers of consecutive ones in row n of A070950;
%C T(n,2*k+1) = numbers of consecutive zeros in row n of A070950;
%C sum(T(n,k): k = 0..A226482(n)-1) = 2*n+1.
%H Reinhard Zumkeller, <a href="/A226481/b226481.txt">Rows n = 0..150 of triangle, flattened</a>
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Rule30.html">Rule 30</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%e . Initial rows A070950, terms moved together
%e . 0: [1] 1
%e . 1: [3] 111
%e . 2: [2,2,1] 11001
%e . 3: [2,1,4] 1101111
%e . 4: [2,2,1,3,1] 110010001
%e . 5: [2,1,4,1,3] 11011110111
%e . 6: [2,2,1,4,1,2,1] 1100100001001
%e . 7: [2,1,4,2,6] 110111100111111
%e . 8: [2,2,1,3,3,5,1] 11001000111000001
%e . 9: [2,1,4,1,2,2,1,3,3] 1101111011001000111
%e . 10: [2,2,1,4,1,1,4,1,2,2,1] 110010000101111011001
%e . 11: [2,1,4,2,2,1,1,4,1,1,4], 11011110011010000101111
%e . 12: [2,2,1,3,3,2,2,2,2,1,1,3,1] 1100100011100110011010001
%e . 13: [2,1,4,1,2,2,3,1,3,2,2,1,3] 110111101100111011100110111
%e . 14: [2,2,1,4,1,1,3,3,1,2,3,2,1,2,1] 11001000010111000100111001001
%e . 15: [2,1,4,2,2,1,1,2,1,1,5,2,7] 1101111001101001011111001111111
%e . 16: [2,2,1,3,3,2,4,1,1,4,3,6,1] 110010001110011110100001110000001 .
%o (Haskell)
%o import Data.List (group)
%o a226481 n k = a226481_tabf !! n !! k
%o a226481_row n = a226481_tabf !! n
%o a226481_tabf = map (map length . group) a070950_tabf
%Y Cf. A226482 (row lengths), A005408 (row sums).
%K nonn,tabf,changed
%O 0,2
%A _Reinhard Zumkeller_, Jun 09 2013