login
A226479
Numbers n such that (sopf(n)*d(n))^2 = sigma(n) where sopf(n) = sum of distinct prime factors of n (A008472) and d(n) = number of divisors of n.
4
22446139, 26116291, 28097023, 30236557, 31090489, 31124341, 39618558, 41628195, 49941589, 51777957, 61137673, 62224039, 66960589, 71096795, 71334867, 71585139, 72304400, 82266591, 83045869, 92346023, 92837591, 105183961, 114762567, 117908994, 123563821
OFFSET
1,1
COMMENTS
Suggested by N. J. A. Sloane.
LINKS
EXAMPLE
n = 22446139 = 31*67*101*107. sopf(n) = 31+67+101+107 = 306. d(n) = 16. (sopf(n)*d(n))^2 = (306*16)^2 = 23970816 = sigma(n).
CROSSREFS
KEYWORD
nonn
AUTHOR
Donovan Johnson, Jun 09 2013
STATUS
approved