OFFSET
1,1
REFERENCES
H. M. Edwards, Riemann's Zeta Function, Dover Publications, New York, 1974 (ISBN 978-0-486-41740-0), page 35.
LINKS
Eric Weisstein's World of Mathematics, Riemann Prime Counting Function.
EXAMPLE
RiemannR(109) = 27.4664... and PrimePi(109) = 29 give the first gap greater than 1, hence a(1) = 109.
MATHEMATICA
Reap[For[n = 1; gap = 1, n < 10^6, n++, If[Abs[RiemannR[n] - PrimePi[n]] > gap, Print[{gap, n}]; Sow[n]; gap++]]][[2, 1]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Jean-François Alcover, Sep 17 2012
STATUS
approved