%I #16 Sep 09 2017 22:34:42
%S 1,11,22,33,44,55,66,77,88,99,111,199,446,464,555,644,666,919,991,
%T 1111,1199,1919,1991,2228,2282,2822,2888,3337,3373,3733,3777,4444,
%U 4466,4646,4664,5555,6446,6464,6644,6666,7333,7377,7737,7773,8222,8288,8828,8882
%N Numbers in which each digit equals the product (mod 10) of the other digits.
%C The repunit numbers > 0 (A002275) are in the sequence.
%C From _Robert Israel_, May 28 2014: (Start)
%C The possibilities for the digits are as follows:
%C only 1's: any number of digits;
%C only 5's or only 6's: any number of digits >= 2;
%C only 4's or only 9's: any even number of digits;
%C only 2's, only 3's, only 7's or only 8's: any number of digits == 2 mod 4;
%C even number of 4's and any number of 6's;
%C even number of 9's and any number of 1's;
%C m 2's and n 8's, or m 3's and n 7's, where m - n == 2 mod 4. (End)
%H Robert Israel, <a href="/A226467/b226467.txt">Table of n, a(n) for n = 1..10000</a>
%e 464 is in the sequence because the digits 4,6,4 satisfy
%e 4 = (6*4) mod 10;
%e 6 = (4*4) mod 10;
%e 4 = (4*6) mod 10.
%p filter:= proc(n) local L;
%p L:= convert(n,base,10);
%p if not member(convert(L,set),{{1},{2},{3},{4},{5},{6},{7},{8},{9},{1,9},{2,8},{3,7},{4,6}}) then return false fi;
%p andmap(t -> convert(subsop(t=1,L),`*`) mod 10 = L[t], [$1..nops(L)]);
%p end proc;
%p select(filter, [$1..10^5]); # _Robert Israel_, May 28 2014
%t Select[Range[10^4], IntegerDigits[#] == Mod[Times@@IntegerDigits[#]/IntegerDigits[#], 10]&]
%Y Cf. A002275.
%K nonn,base
%O 1,2
%A _Michel Lagneau_, Jun 08 2013
%E Edited by _Jon E. Schoenfield_, Sep 09 2017