login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A226306 Denominator of Product_{d|n} b(d)^Moebius(n/d), where b() = A100371(). 2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 3, 3, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 5, 1, 1, 1, 3, 1, 1, 1, 17, 1, 1, 3, 3, 1, 1, 3, 5, 3, 1, 1, 85, 1, 1, 7, 1, 15, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 17, 1, 1, 1, 325, 15, 1, 3, 5, 1, 1, 21, 3, 3, 1, 3, 257, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,12

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..5000

N. Bliss, B. Fulan, S. Lovett, and J. Sommars, Strong Divisibility, Cyclotomic Polynomials, and Iterated Polynomials, Amer. Math. Monthly, 120 (2013), 519-536.

EXAMPLE

1, 1, 3, 3, 15, 1, 63, 5, 21, 1, 1023, 5/3, 4095, 1, 17/3, 17, 65535, 1, 262143, 17/3, 65/3, 1, 4194303, 17/5, 69905, 1, 4161, 65/3, 268435455, 1, 1073741823, 257, 1025/3, 1, 53261/3, 13, ...

MATHEMATICA

Table[Denominator[Product[(2^EulerPhi[d] - 1)^MoebiusMu[n/d], {d, Divisors[n]}]], {n, 100}] (* Indranil Ghosh, Apr 14 2017 *)

PROG

(Python)

from operator import mul

from sympy import divisors, totient, mobius

from fractions import Fraction

def a(n): return Fraction(str(reduce(mul, [(2**totient(d) - 1)**mobius(n/d) for d in divisors(n)]))).denominator

print [a(n) for n in xrange(1, 101)] # Indranil Ghosh, Apr 14 2017

CROSSREFS

Cf. A226305, A100371.

Sequence in context: A076498 A110268 A058965 * A090623 A098094 A087283

Adjacent sequences:  A226303 A226304 A226305 * A226307 A226308 A226309

KEYWORD

nonn,frac

AUTHOR

N. J. A. Sloane, Jun 07 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 26 04:11 EDT 2019. Contains 324369 sequences. (Running on oeis4.)