login
A226278
Decimal expansion of the number x > 1 defined by 2*log(x) = x - 1.
0
3, 5, 1, 2, 8, 6, 2, 4, 1, 7, 2, 5, 2, 3, 3, 9, 3, 5, 3, 9, 6, 5, 4, 7, 5, 2, 3, 3, 2, 1, 8, 4, 3, 2, 6, 5, 3, 8, 3, 2, 8, 3, 3, 6, 6, 3, 4, 0, 2, 6, 4, 7, 4, 2, 2, 2, 5, 1, 7, 8, 9, 4, 5, 4, 0, 9, 6, 6, 0, 0, 9, 5, 7, 0, 8, 2, 1, 0, 3, 8, 0, 7, 0, 6, 7, 3, 2, 9, 5, 0, 1, 8, 9, 4, 5, 0, 1, 6, 9, 7, 8, 8, 4, 0, 5
OFFSET
1,1
COMMENTS
There are two solutions to the equation 2*log(x) = x - 1: {1, 3.51286...}.
Apart from the leading digit the same as A201890. - R. J. Mathar, Jun 05 2013
FORMULA
Equals 1 + A201890.
EXAMPLE
x = 3.512862417252339353965475233218432653832833663402647422251789454...
MAPLE
Digits := 100; evalf([solve(2*ln(n)=n-1, n)]);
MATHEMATICA
RealDigits[x /. FindRoot[2*Log[x] == x - 1, {x, 3.5}, WorkingPrecision -> 110]][[1]]
PROG
(PARI) solve(x=3, 4, 2*log(x)-x+1) \\ Charles R Greathouse IV, Jun 05 2013
CROSSREFS
Cf. A201890.
Sequence in context: A190178 A010261 A281494 * A005699 A127250 A350882
KEYWORD
nonn,cons
AUTHOR
STATUS
approved