%I #19 Sep 01 2018 17:37:26
%S 6,560,714240,13158776832,3664870461407232,15851823599503498280960,
%T 1080418693368712791570241290240,
%U 1169153808560040142520024286639230550016,20164369771081510946277302795802821049707120295936,5553565410774406546950324330177622130219698528711309315276800
%N Number of additive Z_2 Z_8 codes of a certain type (see Siap-Aydogdu for precise definition).
%C N2×8(r, 2k; r, k, 0, k) for k>=1 and r>=1. It appears that for a given k, all r yield the same value. (Siap-Aydogdu Table 1)
%H Lars Blomberg, <a href="/A226263/b226263.txt">Table of n, a(n) for n = 1..30</a>
%H I. Siap and I. Aydogdu, <a href="http://arxiv.org/abs/1303.6985">Counting The Generator Matrices of Z_2 Z_8 Codes</a>, arXiv preprint arXiv:1303.6985 [math.CO], 2013.
%t QP = QPochhammer;
%t a[n_] := 2^(6n^2+n) QP[4^-n, 2, n]/(2^n (16^n)^n QP[2^-n, 2, n]);
%t Array[a, 10] (* _Jean-François Alcover_, Sep 01 2018 *)
%Y Cf. A226262, A226264, A226265, A226266, A226267, 1.A226268
%K nonn
%O 1,1
%A _N. J. A. Sloane_, Jun 02 2013
%E Terms a(5) and beyond from _Lars Blomberg_, Jun 14 2017