login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A226209 Zeckendorf distance between n and n+2. 2
2, 1, 1, 3, 4, 3, 5, 4, 6, 6, 7, 7, 4, 6, 6, 8, 8, 4, 9, 9, 4, 6, 6, 8, 8, 4, 10, 10, 4, 6, 6, 11, 11, 4, 6, 6, 8, 8, 4, 10, 10, 4, 6, 6, 12, 12, 4, 6, 6, 8, 8, 4, 13, 13, 4, 6, 6, 8, 8, 4, 10, 10, 4, 6, 6, 12, 12, 4, 6, 6, 8, 8, 4, 14, 14, 4, 6, 6, 8, 8, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Zeckendorf distance is defined at A226207.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..1000

EXAMPLE

7 = 5 + 2 -> 3 + 1 -> 2, and 9 = 8 + 1 -> 5 -> 3 -> 2.  The total number of Zeckendorf downshifts (i.e., arrows) is 5, so that a(7) = D(7,9) = 5.

MATHEMATICA

zeck[n_Integer] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, z = {}},    While[k > 1, If[t >= Fibonacci[k], AppendTo[z, 1]; t = t - Fibonacci[k], AppendTo[z, 0]]; k--]; If[n > 0 && z[[1]] == 0, Rest[z], z]]; d[n1_, n2_] := Module[{z1 = zeck[n1], z2 = zeck[n2]}, Length[z1] + Length[z2] - 2 (NestWhile[# + 1 &, 1, z1[[#]] == z2[[#]] &, 1, Min[{Length[z1], Length[z2]}]] - 1)]; lst = Map[d[#, # + 2] &, Range[100]] (* Peter J. C. Moses, May 30 2013 *)

CROSSREFS

Cf. A226080, A226207, A226208.

Sequence in context: A157807 A100529 A262953 * A302097 A307277 A210691

Adjacent sequences:  A226206 A226207 A226208 * A226210 A226211 A226212

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, May 31 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 14:38 EDT 2019. Contains 324152 sequences. (Running on oeis4.)