1,3

Clark Kimberling, Table of n, a(n) for n = 1..1000

a(9) = 5 because 1 + 1/2 + 1/3 + 1/4 < log(9) < 1 + 1/2 + 1/3 + 1/4 + 1/5.

z = 80; f[n_] := 1/n; Do[s = 0; a[n] = NestWhile[# + 1 &, 1, ! (s += f[#]) > Log[n] &], {n, 1, z}]; m = Map[a, Range[z]]

Cf. A226183, A226189, A004081.

Sequence in context: A147954 A194204 A100679 * A195182 A225875 A189688

Adjacent sequences: A226187 A226188 A226189 * A226191 A226192 A226193

nonn

Clark Kimberling, May 30 2013

approved