OFFSET
1,1
COMMENTS
The differences next_prime(2^n) - 2^n are respectively: 1, 3, 3, 15, 165, 1035, 663, 2211.
If it exists, a(9) > 10000. - Hugo Pfoertner, Feb 06 2021
FORMULA
A340707(a(n)) = 0. - Hugo Pfoertner, Feb 06 2021
EXAMPLE
2^6 = 64, next prime = 67, previous prime = 61, 67-64 = 64-61 = 3, hence 6 is in the sequence.
MATHEMATICA
Reap[Do[m = 2^n; p = NextPrime[m, -1]; q = NextPrime[m]; If[p + q == 2*m, Print[n]; Sow[n]], {n, 2, 10^4}]][[2, 1]]
PROG
(PARI) isok(n) = my(p=2^n); p-precprime(p-1) == nextprime(p+1) - p; \\ Michel Marcus, Oct 02 2019
(PARI) for(n=2, 1100, my(p2=2^n, pn=nextprime(p2), pp=p2-pn+p2); if(ispseudoprime(pp), if(precprime(p2)==pp, print1(n, ", ")))) \\ Hugo Pfoertner, Feb 06 2021
(Python)
from itertools import count, islice
from sympy import isprime, nextprime
def A226178_gen(): # generator of terms
return filter(lambda n:isprime(r:=((k:=1<<n)<<1)-(m:=nextprime(k))) and nextprime(r)==m, count(1))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Jean-François Alcover, May 30 2013
EXTENSIONS
Offset 1 from Michel Marcus, Oct 02 2019
a(8) from Hugo Pfoertner, Feb 05 2021
STATUS
approved