This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226156 a(n) = BS(n) * W(n) where BS = sum_{k=0..n} ((-1)^k*k!/(k+1)) S(n, k) and S(n, k) the Stirling subset numbers A048993(n, k). W(n) = product{ p primes <= n+1 such that p divides n+1 or p-1 divides n } = A225481(n). 2
 1, -1, 1, 0, -1, 0, 1, 0, -1, 0, 5, 0, -691, 0, 35, 0, -3617, 0, 43867, 0, -1222277, 0, 854513, 0, -236364091, 0, 8553103, 0, -23749461029, 0, 8615841276005, 0, -84802531453387, 0, 90219075042845, 0, -26315271553053477373, 0, 38089920879940267 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 COMMENTS a(n)/A225481(n) is a representation of the Bernoulli numbers. This is case m = 1 of the scaled generalized Bernoulli numbers defined as sum_{k=0..n} ((-1)^k*k!/(k+1)) S_{m}(n,k) where S_{m}(n,k) are generalized Stirling subset numbers. A225481(n) can be seen as an analog of the Clausen numbers A141056(n). Reduced to lowest terms a(n)/A225481(n) becomes A027641(n)/A027642(n). LINKS Peter Luschny, Stirling-Frobenius numbers Peter Luschny, Generalized Bernoulli numbers. EXAMPLE The numerators of 1/1, -1/2, 1/6, 0/2, -1/30, 0/6, 1/42, 0/2, -1/30, 0/10, 5/66, 0/6, -691/2730, 0/14, 35/30, 0/2, -3617/510, 0/6, 43867/798, ... (the denominators are A225481(n)). PROG (Sage) @CachedFunction def EulerianNumber(n, k, m) :   # -- The Eulerian numbers --     if n == 0: return 1 if k == 0 else 0     return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m) + \            (m*k+1)*EulerianNumber(n-1, k, m) @CachedFunction def SF_BS(n, m):   # -- The scaled Stirling-Frobenius Bernoulli numbers --     return add(add(EulerianNumber(n, j, m)*binomial(j, n - k) \            for j in (0..n))/((-m)^k*(k+1)) for k in (0..n)) def A226156(n):    # -- The numerators of SF_BS(n, 1) relative to A225481 --     C = mul(filter(lambda p: ((n+1)%p == 0) or (n%(p-1) == 0), primes(n+2)))     return C*SF_BS(n, 1) [A226156(n) for n in (0..25)] CROSSREFS Cf. A225481, A226157. Sequence in context: A027641 A164555 A176327 * A215616 A249737 A129205 Adjacent sequences:  A226153 A226154 A226155 * A226157 A226158 A226159 KEYWORD sign,frac AUTHOR Peter Luschny, May 30 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 22:37 EST 2019. Contains 319310 sequences. (Running on oeis4.)