login
A226125
Denominators of signed Egyptian fractions 1/(1+a(n)) with sums converging to sqrt(2).
1
5, 26, 798, 1036219, 1679769509872, 6521391013068322601901238, 285305237462037970325184857571103801772580723343165
OFFSET
1,1
COMMENTS
The algorithm at A226049, with r = sqrt(2), f(n) = 1/(n+1), gives
1 + 1/2 + ... + 1/a(1) - 1/a(2) + 1/a(3) - , ... converging to sqrt(2). The sum 1 + 1/2 + ... - 1/a(12) differs from sqrt(2) by less than 10^(-3200).
EXAMPLE
Sum of the first 7 signed Egyptian fractions: 1/2 + 1/3 + 1/5 + 1/6 - 1/27 + 1/799 - 1/1036229, showing denominators (beginning at 6), a(1)+1, a(2)+1, a(3)+1, ...
MATHEMATICA
$MaxExtraPrecision = Infinity; z = 12; f[n_] := 1/(n + 1); g[n_] := (1 - n)/n; r = Sqrt[2]; s = 0; a[1] = NestWhile[# + 1 &, 1, ! (s += f[#]) > r &]; p = Sum[f[n], {n, 1, a[1]}]; a[2] = Floor[g[p - r]]; a[n_] :=
Floor[g[((-1)^n) (p - r - Sum[((-1)^k) f[a[k]], {k, 2, n - 1}])]]; Table[a[k], {k, 1, z}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 27 2013
STATUS
approved