

A226115


Least positive integer not of the form p_m  p_{m1} + ... +(1)^(mk)*p_k with 0 < k < m <= n, where p_j denotes the jth prime.


2



1, 2, 3, 6, 7, 10, 11, 14, 18, 18, 20, 20, 24, 24, 28, 28, 34, 34, 40, 40, 42, 42, 46, 46, 46, 54, 56, 56, 58, 58, 60, 64, 78, 78, 80, 80, 94, 94, 98, 98, 104, 104, 106, 106, 106, 106, 118, 118, 118, 118, 122, 122, 140, 140, 146, 146, 152, 152, 158, 158
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Conjecture: sqrt(2*a(n)) > sqrt(p_n)0.7 for all n > 0, and a(n) is even for any n > 7.
Note that f(n) = sqrt(2*a(n))sqrt(p_n)+0.7 is approximately equal to 0.000864 at n = 651. It seems that f(n) > 0.1 for any other value of n.


LINKS

ZhiWei Sun, Table of n, a(n) for n = 1..10000
ZhiWei Sun, On functions taking only prime values, J. Number Theory 133(2013), 27942812.


EXAMPLE

a(4) = 6, since 2,3,5,7 are the initial four primes, and 1=32, 2=53, 3=75+32, 4=53+2, 5=75+3.


MATHEMATICA

s[0_]:=0
s[n_]:=s[n]=Prime[n]s[n1]
R[j_]:=R[j]=Union[Table[s[j](1)^(ji)*s[i], {i, 0, j2}]]
t=1
Do[Do[Do[If[MemberQ[R[j], m]==True, Goto[aa]], {j, PrimePi[m]+1, n}]; Print[n, " ", m]; t=m; Goto[bb];
Label[aa]; Continue, {m, t, Prime[n]1}]; Print[n, " ", counterexample]; Label[bb], {n, 1, 100}]


CROSSREFS

Cf. A000040, A225889, A222579, A222580.
Sequence in context: A230375 A062837 A190670 * A073170 A014689 A117206
Adjacent sequences: A226112 A226113 A226114 * A226116 A226117 A226118


KEYWORD

nonn


AUTHOR

ZhiWei Sun, May 27 2013


STATUS

approved



