OFFSET
1,1
COMMENTS
Using the algorithm defined at A226049 with r = e and f(n) = 1/n gives
r = sum{1/k, k=1..9} - 1/9 + 1/2354 - 1/8114635 + ...
r = sum{1/k, k=1..8} + 1/2354 - 1/81154635 + ...; for this second series, the 17th partial sum differs from the e by less than 10^(-900). For a guide to related sequences, see A226049.
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..12
EXAMPLE
1 + 1/2 + ... + 1/8 < e < 1 + 1/2 + ... + 1/8 + 1/9, so a(1) = 9.
1 + 1/2 + ... + 1/9 - 1/9 < e, so a(2) = 9.
1 + 1/2 + ... + 1/9 - 1/9 + 1/2354 > e, so a(3) = 2354.
MATHEMATICA
$MaxExtraPrecision = Infinity;
nn = 10; f[n_] := 1/n; r = E; s = 0; b[1] = NestWhile[# + 1 &, 1, ! (s += f[#]) > r &]; u[1] = Sum[f[n], {n, 1, b[1]}]; c[1] = Floor[1/(u[1] - r)]; v[1] = u[1] - 1/c[1]; n = 1; While[n < nn/2, n++; b[n] = Floor[1/(r - v[n - 1])]; u[n] = v[n - 1] + 1/b[n]; c[n] = Floor[1/(u[n] - r)]; v[n] = u[n] - 1/c[n]]; a = Riffle[Table[b[i], {i, 1, nn/2}], Table[c[i], {i, 1, nn/2}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 24 2013
STATUS
approved