OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-19/24) * eta(q^2)^4 * eta(q^3)^6 * eta(q^4) / eta(q)^11 in powers of q.
a(n) = 1/12 * A001935(9*n + 7).
a(n) ~ exp(3*Pi*sqrt(n/2)) / (2^(19/4) * 3^(5/2) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015
EXAMPLE
1 + 11*x + 73*x^2 + 368*x^3 + 1552*x^4 + 5755*x^5 + 19337*x^6 + 60054*x^7 + ...
q^19 + 11*q^43 + 73*q^67 + 368*q^91 + 1552*q^115 + 5755*q^139 + 19337*q^163 + ...
MATHEMATICA
nmax=60; CoefficientList[Series[Product[(1+x^k)^4 * (1-x^(3*k))^6 * (1-x^(4*k)) / (1-x^k)^7, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 14 2015 *)
eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[q^(-19/24)* eta[q^2]^4*eta[q^3]^6*eta[q^4]/eta[q]^11, {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Mar 15 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^3 + A)^6 * eta(x^4 + A) / eta(x + A)^11, n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, May 28 2013
STATUS
approved