login
A226031
Number A(n,k) of unimodal functions f:[n]->[k*n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
3
1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 16, 22, 0, 1, 4, 36, 161, 130, 0, 1, 5, 64, 525, 1716, 791, 0, 1, 6, 100, 1222, 8086, 18832, 4900, 0, 1, 7, 144, 2360, 24616, 128248, 210574, 30738, 0, 1, 8, 196, 4047, 58730, 510664, 2072862, 2385644, 194634, 0
OFFSET
0,8
LINKS
FORMULA
A(n,k) = Sum_{j=0..k*n-1} C(n+2*j-1,2*j), A(0,k) = 1.
A(n,k) = A071921(n,k*n).
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 4, 16, 36, 64, 100, ...
0, 22, 161, 525, 1222, 2360, ...
0, 130, 1716, 8086, 24616, 58730, ...
0, 791, 18832, 128248, 510664, 1505205, ...
MAPLE
A:= (n, k)-> `if`(n=0, 1, add(binomial(n+2*j-1, 2*j), j=0..k*n-1)):
seq(seq(A(n, d-n), n=0..d), d=0..10);
MATHEMATICA
A[n_, k_] := If[n==0, 1, Sum[Binomial[n + 2j - 1, 2j], {j, 0, k n - 1}]];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)
CROSSREFS
Columns k=0-2 give: A000007, A088536, A226012.
Rows n=0-2 give: A000012, A001477, A016742.
Main diagonal gives: A227402.
Cf. A071920.
Sequence in context: A118343 A309148 A351761 * A308460 A244116 A138133
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, May 23 2013
STATUS
approved