This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226007 Expansion of x * f(-x^7) * f(-x^21) / (f(-x) * f(-x^3)) where f() is a Ramanujan theta function. 2
 1, 1, 2, 4, 6, 9, 16, 21, 32, 48, 66, 92, 134, 177, 243, 334, 441, 585, 788, 1018, 1334, 1746, 2240, 2877, 3715, 4698, 5972, 7582, 9517, 11940, 15005, 18639, 23190, 28812, 35544, 43808, 53996, 66084, 80887, 98868, 120278, 146157, 177497, 214562, 259227 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 1..2500 Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of eta(q^7) * eta(q^21) / (eta(q) * eta(q^3)) in powers of q. Euler transform of period 21 sequence [1, 1, 2, 1, 1, 2, 0, 1, 2, 1, 1, 2, 1, 0, 2, 1, 1, 2, 1, 1, 0, ...]. G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u*v * (1 + 7 * u*v) - (u+v) * (u^2 - 3 * u*v + v^2). G.f. is a period 1 Fourier series which satisfies f(-1 / (21 t)) = 1/7 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A226006. G.f.: x * Product_{k>0} (1 - x^(7*k)) * (1 - x^(21*k)) / ( (1 - x^k) * (1 - x^(3*k))). Convolution inverse of A226006. a(n) ~ exp(4*Pi*sqrt(n/21)) / (sqrt(2) * 3^(1/4) * 7^(5/4) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015 EXAMPLE G.f. = q + q^2 + 2*q^3 + 4*q^4 + 6*q^5 + 9*q^6 + 16*q^7 + 21*q^8 + 32*q^9 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ q QPochhammer[ q^7] QPochhammer[ q^21] / (QPochhammer[ q] QPochhammer[ q^3]), {q, 0, n}]; (* Michael Somos, Apr 12 2015 *) PROG (PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^7 + A) * eta(x^21 + A) / (eta(x + A) * eta(x^3 + A)), n))}; CROSSREFS Cf. A226006. Sequence in context: A074677 A179997 A101756 * A257655 A318026 A173241 Adjacent sequences:  A226004 A226005 A226006 * A226008 A226009 A226010 KEYWORD nonn AUTHOR Michael Somos, May 22 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 17:27 EDT 2019. Contains 324234 sequences. (Running on oeis4.)