login
A225900
T(n,k)=Number of nXk binary arrays whose sum with another nXk binary array containing no more than a single 1 has rows and columns in lexicographically nondecreasing order
7
2, 4, 4, 7, 12, 7, 11, 33, 33, 11, 16, 78, 145, 78, 16, 22, 162, 545, 545, 162, 22, 29, 304, 1770, 3459, 1770, 304, 29, 37, 527, 5052, 19270, 19270, 5052, 527, 37, 46, 858, 12910, 93428, 193122, 93428, 12910, 858, 46, 56, 1328, 30055, 396804, 1706655, 1706655
OFFSET
1,1
COMMENTS
Table starts
..2....4.....7......11........16..........22............29..............37
..4...12....33......78.......162.........304...........527.............858
..7...33...145.....545......1770........5052.........12910...........30055
.11...78...545....3459.....19270.......93428........396804.........1495926
.16..162..1770...19270....193122.....1706655......13135919........88428634
.22..304..5052...93428...1706655....28401254.....415506534......5301203235
.29..527.12910..396804..13135919...415506534...11798042714....293929504271
.37..858.30055.1495926..88428634..5301203235..293929504271..14479422646045
.46.1328.64701.5079770.526448417.59290115703.6410647528344.626694049293680
LINKS
FORMULA
Empirical: columns k=1..6 are polynomials in n of degree 2^k
EXAMPLE
Some solutions for n=3 k=4
..0..0..1..1....0..1..1..1....0..0..0..0....0..0..0..1....0..0..1..0
..0..1..0..0....1..0..0..0....0..1..1..1....0..1..0..1....0..1..0..1
..1..1..1..1....1..0..1..1....0..1..1..1....0..1..1..0....1..1..0..1
CROSSREFS
Column 1 is A000124
Sequence in context: A223770 A223777 A227089 * A227558 A296651 A297085
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin May 20 2013
STATUS
approved