login
A225888
Primes p such that neither 2 nor 3 are primitive roots, but together 2 and 3 generate the nonzero residues mod p.
1
41, 103, 109, 151, 157, 229, 251, 271, 277, 367, 397, 683, 733, 761, 967, 971, 991, 1051, 1069, 1163, 1181, 1289, 1303, 1429, 1471, 1543, 1759, 1783, 1789, 1811, 1879, 2003, 2297, 2411, 2441, 2551, 2749, 2791, 2887, 2917, 3061, 3079, 3109, 3229, 3251, 3301, 3319
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
2 has multiplicative order 20 mod 41, 3 has order 8 mod 41 so neither is a primitive root. The subgroup 2 and 3 generate together will have order lcm(20,8) = 40 so 2 and 3 generate all nonzero residues.
PROG
(PARI) is(n)=if(n>40 && isprime(n), my(a=znorder(Mod(2, n)), b); if(a==n-1, return(0)); b=znorder(Mod(3, n)); b<n-1 && lcm(a, b)==n-1, 0) \\ Charles R Greathouse IV, May 19 2013
CROSSREFS
Sequence in context: A309934 A126588 A142794 * A156971 A123043 A142014
KEYWORD
nonn
AUTHOR
John L. Drost, May 19 2013
STATUS
approved