login
Nonnegative integers of the form x*y*z*(x+y-z) with integers x>=y>=z.
0

%I #10 May 21 2013 15:07:25

%S 0,1,4,9,12,16,24,25,36,40,45,49,60,64,72,81,84,100,105,112,120,121,

%T 144,160,169,180,189,192,196,216,220,225,240,252,256,264,280,289,297,

%U 300,312,324,336,352,360,361,364,384,385,396,400,420,429,432,441,480

%N Nonnegative integers of the form x*y*z*(x+y-z) with integers x>=y>=z.

%C For n>=0 and n = x*y*z*(x+y-z) with integers x>=y>=z then we can even find nonnegative solutions (x,y,z). However, if we restrict to z>=0 then there are no solutions (x,y,z) in case n<0.

%C The negative integers of the form x*y*z*(x+y-z) with integers x>=y>=z are the negatives of A213158 and in that case z<0.

%C Nonnegative integers of the form (a^2-c^2)*(b^2-c^2) with integers a>=b>=c.

%C Note that we must allow c<0 to represent n=12, 24, 40, ....

%C The negative integers of the form (a^2-c^2)*(b^2-c^2) with integers a>=b>=c are the negatives of A213158.

%e 12 = (1)*(-2)*(-3)*((1)+(-2)-(-3)) with (x,y,z) = (1,-2,-3).

%e 12 = 2*2*1*(2+2-1) with (x,y,z) = (2,2,1).

%e 12 = ((0)^2-(-2)^2)*((-1)^2-(-2)^2) with (a,b,c) = (0,-1,-2).

%e 12 = ((1)^2-(-2)^2)*((0)^2-(-2)^2) with (a,b,c) = (1,0,-2).

%o (PARI) {isa(n) = forvec( v = vector(3, i, [0, ceil(n^(1/2))]), if( n == v[1] * v[2] * v[3] * (v[3] + v[2] - v[1]), return(1)), 1)}

%Y Cf. A213158.

%K nonn

%O 1,3

%A _Michael Somos_, May 18 2013