

A225870


Nonnegative integers of the form x*y*z*(x+yz) with integers x>=y>=z.


0



0, 1, 4, 9, 12, 16, 24, 25, 36, 40, 45, 49, 60, 64, 72, 81, 84, 100, 105, 112, 120, 121, 144, 160, 169, 180, 189, 192, 196, 216, 220, 225, 240, 252, 256, 264, 280, 289, 297, 300, 312, 324, 336, 352, 360, 361, 364, 384, 385, 396, 400, 420, 429, 432, 441, 480
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

For n>=0 and n = x*y*z*(x+yz) with integers x>=y>=z then we can even find nonnegative solutions (x,y,z). However, if we restrict to z>=0 then there are no solutions (x,y,z) in case n<0.
The negative integers of the form x*y*z*(x+yz) with integers x>=y>=z are the negatives of A213158 and in that case z<0.
Nonnegative integers of the form (a^2c^2)*(b^2c^2) with integers a>=b>=c.
Note that we must allow c<0 to represent n=12, 24, 40, ....
The negative integers of the form (a^2c^2)*(b^2c^2) with integers a>=b>=c are the negatives of A213158.


LINKS

Table of n, a(n) for n=1..56.


EXAMPLE

12 = (1)*(2)*(3)*((1)+(2)(3)) with (x,y,z) = (1,2,3).
12 = 2*2*1*(2+21) with (x,y,z) = (2,2,1).
12 = ((0)^2(2)^2)*((1)^2(2)^2) with (a,b,c) = (0,1,2).
12 = ((1)^2(2)^2)*((0)^2(2)^2) with (a,b,c) = (1,0,2).


PROG

(PARI) {isa(n) = forvec( v = vector(3, i, [0, ceil(n^(1/2))]), if( n == v[1] * v[2] * v[3] * (v[3] + v[2]  v[1]), return(1)), 1)}


CROSSREFS

Cf. A213158.
Sequence in context: A312859 A045673 A292226 * A171920 A141037 A109424
Adjacent sequences: A225867 A225868 A225869 * A225871 A225872 A225873


KEYWORD

nonn


AUTHOR

Michael Somos, May 18 2013


STATUS

approved



