login
A225847
Decimal expansion of sum_{n>=1} 1/(n*binomial(4*n,n)).
1
2, 6, 9, 5, 2, 3, 9, 2, 9, 0, 2, 7, 7, 4, 2, 0, 1, 7, 3, 1, 7, 1, 8, 1, 6, 4, 7, 4, 8, 6, 3, 2, 9, 3, 0, 2, 8, 4, 0, 8, 4, 9, 8, 2, 5, 3, 4, 3, 2, 6, 6, 3, 0, 9, 8, 1, 5, 8, 4, 3, 7, 7, 2, 9, 1, 8, 6, 2, 8, 3, 6, 9, 8, 2, 7, 6, 4, 0, 8, 2, 5, 3, 2, 7, 3, 3, 1, 2, 6, 1, 8, 5, 8, 3, 0, 0, 4, 8, 4, 4, 0, 6, 0, 8, 3
OFFSET
0,1
COMMENTS
Equals Integral_{x>0}((3*x)/((1 + x)*(1 + 3*x + 6*x^2 + 4*x^3 + x^4))).
REFERENCES
George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 60.
LINKS
N. Batir, A. Sofo, On some series involving reciprocals of binomial coefficients, Appl. Math. Comp. 220 (2013) 331-338, Example 7.
EXAMPLE
0.269523929027742017317181647486329302840849825343266309815843772918628369827...
MATHEMATICA
(1/4)*HypergeometricPFQ[{1, 1, 4/3, 5/3}, {5/4, 3/2, 7/4}, 27/256] // RealDigits[#, 10, 105]& // First
CROSSREFS
Sequence in context: A170821 A096667 A265989 * A021375 A190407 A057052
KEYWORD
nonn,cons
AUTHOR
STATUS
approved