login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A225797 The number of idempotents in the partition monoid on [1..n]. 5
2, 12, 114, 1512, 25826, 541254, 13479500, 389855014, 12870896154, 478623817564, 19835696733562, 908279560428462, 45625913238986060, 2499342642591607902, 148545280714724993650, 9537237096314268691724 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The partition monoid is the set of partitions on [1..2n] and multiplication as defined in Halverson and Ram.

No general formula is known for the number of idempotents in the partition monoid.

a(2) to a(8) were first produced using the Semigroups package for GAP, which contains code based on earlier calculations by Max Neunhoeffer.

LINKS

James Mitchell, Table of n, a(n) for n = 1..115

I. Dolinka, J. East, A. Evangelou, D. FitzGerald, N. Ham, et al., Enumeration of idempotents in diagram semigroups and algebras, arXiv preprint arXiv:1408.2021 [math.GR], 2014.

T. Halverson, A. Ram, Partition algebras, European J. Combin. 26 (6) (2005) 869-921.

J. D. Mitchell et al., Semigroups package for GAP.

PROG

(GAP) for i in [2 .. 8] do

  Print(NrIdempotents(PartitionMonoid(i)), "\n");

od;

CROSSREFS

Cf. A227545.

Sequence in context: A052696 A107723 A258175 * A302286 A035051 A214222

Adjacent sequences:  A225794 A225795 A225796 * A225798 A225799 A225800

KEYWORD

nonn

AUTHOR

James Mitchell, Jul 27 2013

EXTENSIONS

a(9)-a(12) from James East, Feb 07 2014

a(13) onwards from James Mitchell, May 23 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 01:37 EDT 2018. Contains 316275 sequences. (Running on oeis4.)