The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225779 Largest coefficient of (1 + x + ... + x^11)^n. 5
 1, 1, 12, 108, 1156, 12435, 137292, 1528688, 17232084, 195170310, 2228154512, 25506741084, 293661065788, 3386455204288, 39222848622984, 454745042732160, 5290621952635476, 61590267941514516, 719050614048219912, 8397773337294253140, 98314091309732350656 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Generally, largest coefficient of (1 + x + ... + x^k)^n is asymptotic to (k+1)^n * sqrt(6/(k*(k+2)*Pi*n)). LINKS Robert Israel, Table of n, a(n) for n = 0..3203 FORMULA a(n) ~ 12^n * sqrt(6/(143*Pi*n)). MAPLE P:= add(x^i, i=0..11): seq(coeff(P^n, x, floor(11*n/2)), n=0..50); # Robert Israel, Jan 30 2017 MATHEMATICA Flatten[{1, Table[Coefficient[Expand[Sum[x^j, {j, 0, 11}]^n], x^Floor[11*n/2]], {n, 1, 20}]}] f[n_] := Max[CoefficientList[Sum[x^k, {k, 0, 11}]^n, x]]; Array[f, 20, 0] (* Robert G. Wilson v, Jan 29 2017 *) PROG (PARI) a(n) = vecmax(Vec(Pol(vector(12, k, 1))^n)); \\ Michel Marcus, Jan 29 2017 CROSSREFS Cf. A001405, A002426, A005190, A005191, A018901, A025012, A025013, A025014, A025015, A201549, A201550. Sequence in context: A069653 A155608 A228013 * A289291 A138432 A011999 Adjacent sequences:  A225776 A225777 A225778 * A225780 A225781 A225782 KEYWORD nonn AUTHOR Vaclav Kotesovec, Aug 09 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 03:06 EST 2022. Contains 350601 sequences. (Running on oeis4.)