login
First occurrence of n consecutive n's in the decimal expansion of the Glaisher-Kinkelin constant.
0

%I #15 Dec 03 2015 11:23:24

%S 7,14,2264,1179,411556

%N First occurrence of n consecutive n's in the decimal expansion of the Glaisher-Kinkelin constant.

%C Earls sequence for the Glaisher-Kinkelin constant.

%C a(6) > 5*10^5 - _Eric W. Weisstein_, Dec 03 2015

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Glaisher-KinkelinConstantDigits.html">Glaisher-Kinkelin Constant Digits</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EarlsSequence.html">Earls Sequence</a>

%e A = 1.2824271291006226369.., so

%e a(1) = 7 (one 1 first appears at digit 7 after the decimal point)

%e a(2) = 14 (two 2s first occur starting at digit 14)

%t c = Rest@ First@ RealDigits[N[Glaisher, 3000]]; SequencePosition[c, #][[1, 1]] &@ Table[#, {#}] & /@ Range@ 4 (* _Michael De Vlieger_, Dec 03 2015, Version 10.1 *)

%Y Cf. A074962 (decimal expansion of the Glaisher-Kinkelin constant).

%K nonn,hard,base

%O 1,1

%A _Eric W. Weisstein_, Jul 25 2013

%E a(5) from _Eric W. Weisstein_, Dec 03 2015