login
A225708
Composite squarefree numbers n such that p(i)-8 divides n+8, where p(i) are the prime factors of n.
3
10, 22, 55, 70, 154, 190, 322, 385, 442, 595, 682, 2002, 2737, 3619, 5530, 14986, 23782, 24817, 25102, 26767, 30430, 31042, 34762, 37810, 85462, 106582, 141427, 171790, 189727, 225910, 243217, 248482, 255142, 272782, 307090, 381547, 388102, 471262, 637849, 798490
OFFSET
1,1
EXAMPLE
Prime factors of 381547 are 23, 53 and 313. We have that (381547+8)/(23-8)=25437, (381547+8)/(53-8)=8479 and (381547+8)/(313-8)=1251.
MAPLE
with(numtheory); A225708:=proc(i, j) local c, d, n, ok, p, t;
for n from 1 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;
if not type((n+j)/(p[d][1]-j), integer) then ok:=0; break; fi; od;
if ok=1 then print(n); fi; fi; od; end: A225708(10^9, 8);
MATHEMATICA
t = {}; n = 0; While[Length[t] < 40, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Union[Mod[n + 8, p - 8]] == {0}, AppendTo[t, n]]]; t (* T. D. Noe, May 17 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, May 13 2013
STATUS
approved