login
Composite squarefree numbers n such that p(i)-3 divides n+3, where p(i) are the prime factors of n.
3

%I #12 May 17 2013 14:11:10

%S 77,2717,3245,18221,30797,37177,46397,51997,56573,61997,111757,128573,

%T 149765,158197,263117,264517,314717,437437,475157,617437,667573,

%U 683537,701005,718333,834197,864497,902957,904397,929005,945277,1030237,1096205,1139653,1188317

%N Composite squarefree numbers n such that p(i)-3 divides n+3, where p(i) are the prime factors of n.

%H Paolo P. Lava, <a href="/A225703/b225703.txt">Table of n, a(n) for n = 1..80</a>

%e Prime factors of 37177 are 7, 47 and 113. We have that (37177+3)/(7-3) = 9295, (37177+3)/(47-3) = 845 and (37177+3)/(113-3) = 338.

%p with(numtheory); A225703:=proc(i,j) local c, d, n, ok, p, t;

%p for n from 1 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;

%p for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;

%p if not type((n+j)/(p[d][1]-j),integer) then ok:=0; break; fi; od;

%p if ok=1 then print(n); fi; fi; od; end: A225703(10^9,3);

%t t = {}; n = 0; len = -2; While[len <= 262, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Mod[n, 3] > 0 && Union[Mod[n + 3, p - 3]] == {0}, AppendTo[t, n]; len = len + Length[IntegerDigits[n]] + 2]]; t (* _T. D. Noe_, May 17 2013 *)

%Y Cf. A208728, A225702, A225704-A225720.

%K nonn

%O 1,1

%A _Paolo P. Lava_, May 13 2013