OFFSET
1,1
COMMENTS
Is there a finite set of odd primes p where 1/(p+1) sums exactly to 1? (This would be an analog of 1/(2+1) + 1/(3+1) + 1/(5+1) + 1/(7+1) + 1/(11+1) + 1/(23+1) = 1 -- see A000058.)
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..23
MATHEMATICA
a[n_] := a[n] = Block[ {sm = Sum[ 1/(a[i] + 1), {i, n - 1}]}, NextPrime[ Max[ a[n - 1], 1/(1 - sm)]]]; a[0] = 2; Array[ a, 20]
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, May 11 2013
STATUS
approved