login
A225658
a(n) = n! + (n+1)! + 3*(n+2)!.
2
8, 21, 80, 390, 2304, 15960, 126720, 1134000, 11289600, 123742080, 1480550400, 19199980800, 268240896000, 4016428416000, 64163222323200, 1089292748544000, 19583731335168000, 371693362360320000, 7426753498644480000, 155827373623713792000
OFFSET
0,1
COMMENTS
In factorial base representation (A007623) the terms are written as: 110, 311, 3110, 31100, 311000, ... From a(1) = 21 = "311" onwards each term always begins with "311", followed by n-1 zeros. - Antti Karttunen, Sep 24 2016
FORMULA
a(n) = A211369(3,n).
3*a(n) -(3*n+5)*a(n-1) +(1-n)*a(n-2) +(2-n)*a(n-3) = 0.
E.g.f: (3*x-x^2-8)/(x-1)^3. - Benedict W. J. Irwin, Sep 27 2016
MAPLE
A225658 := proc(n)
n!+(n+1)!+3*(n+2)! ;
end proc:
MATHEMATICA
#[[1]]+#[[2]]+3#[[3]]&/@Partition[Range[0, 30]!, 3, 1] (* Harvey P. Dale, Apr 08 2014 *)
Table[CoefficientList[Series[(3x-x^2-8)/(x-1)^3, {x, 0, 30}], x][[n]](n-1)!, {n, 1, 30}] (* Benedict W. J. Irwin, Sep 27 2016 *)
PROG
(Magma) [Factorial(n) +Factorial(n+1)+3*Factorial(n+2): n in [0..20]]; // Vincenzo Librandi, Apr 09 2014
(Scheme) (define (A225658 n) (+ (A000142 n) (A000142 (+ 1 n)) (* 3 (A000142 (+ 2 n))))) ;; Antti Karttunen, Sep 24 2016
CROSSREFS
Cf. A000142.
Row 3 of A211369, row 16 of A276955 (from a(1)=21 onward).
Sequence in context: A079386 A156304 A232049 * A226313 A275185 A264238
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, May 11 2013
STATUS
approved