login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A225655 a(n) = largest LCM of partitions of n divisible by n. 6
1, 2, 3, 4, 5, 6, 7, 8, 9, 30, 11, 60, 13, 84, 105, 16, 17, 180, 19, 420, 420, 330, 23, 840, 25, 780, 27, 1540, 29, 4620, 31, 32, 4620, 3570, 9240, 13860, 37, 7980, 16380, 27720, 41, 32760, 43, 60060, 45045, 19320, 47, 55440, 49, 23100, 157080, 180180, 53 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) = lcm(p1,p2,...,pk) for that partition of n for which the LCM is a multiple of n, and which maximizes this value among all such partitions [p1,p2,...,pk] of n.

LINKS

Antti Karttunen and Alois P. Heinz, Table of n, a(n) for n = 1..100 (terms n = 0..83 from Antti Karttunen)

Index entries for sequences related to lcm's

MAPLE

b:= proc(n, i) option remember; `if`(n=0, {1},

      `if`(i<1, {}, {seq(map(x->ilcm(x, `if`(j=0, 1, i)),

       b(n-i*j, i-1))[], j=0..n/i)}))

    end:

a:= n-> max(select(x-> irem(x, n)=0, b(n$2))[]):

seq(a(n), n=1..50);  # Alois P. Heinz, May 26 2013

MATHEMATICA

b[n_, i_] := b[n, i] = If[n==0, {1}, If[i<1, {}, Union @ Flatten @ Table[ Map[ Function[{x}, LCM[x, If[j==0, 1, i]]], b[n-i*j, i-1]], {j, 0, n/i}]]]; a[n_] := Max[Select[b[n, n], Mod[#, n]==0&]]; Table[a[n], {n, 1, 50}] (* Jean-Fran├žois Alcover, Jul 29 2015, after Alois P. Heinz *)

CROSSREFS

For all n, a(A225651(n)) = A000793(A225651(n)).

Cf. A225646, A225656, A225652.

A225657 lists the values of n for which a(n) = n.

Sequence in context: A229547 A118767 A072941 * A024658 A004849 A261279

Adjacent sequences:  A225652 A225653 A225654 * A225656 A225657 A225658

KEYWORD

nonn

AUTHOR

Antti Karttunen, May 19 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 04:09 EDT 2019. Contains 328106 sequences. (Running on oeis4.)