This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225630 Array of iterated Landau-like functions, starting maximization of LCM from the partition {1+1+...+1} of n, read downwards antidiagonals. 16
 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 6, 2, 1, 1, 1, 6, 12, 6, 2, 1, 1, 1, 6, 30, 12, 6, 2, 1, 1, 1, 12, 30, 60, 12, 6, 2, 1, 1, 1, 15, 84, 60, 60, 12, 6, 2, 1, 1, 1, 20, 120, 420, 60, 60, 12, 6, 2, 1, 1, 1, 30, 180, 840, 420, 60, 60, 12, 6, 2, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Row 0 consists of all 1's (corresponding to lcm(1,1,...,1) computed from the {1+1+...+1} partition), after which, on each succeeding row, the entry A(row,n) is computed by finding such a partition {p1+p2+...+pk} of n that value of lcm(A(row-1,n),p1,p2,...,pk) is maximized. This will produce the ordinary Landau's function (A000793) for row 1, the "second order Landau's function" (A225627) for row 2, etc. For each column n, only finite number of distinct values (A225634(n)) occur, after which the fixed point A003418(n) that has been reached repeats forever. LINKS EXAMPLE Table begins:   1, 1, 1, 1,  1,  1,  1,   1,   1,  1, ...   1, 1, 2, 3,  4,  6,  6,  12,  15, 20, ...   1, 1, 2, 6, 12, 30, 30,  84, 120, ...   1, 1, 2, 6, 12, 60, 60, 420, 840, ...   ... PROG (Scheme): (define (A225630 n) (A225630bi (A025581 n) (A002262 n))) (define (A225630bi col row) (let ((maxlcm (list 0))) (let loop ((prevmaxlcm 1) (stepsleft row)) (if (zero? stepsleft) prevmaxlcm (begin (gen_partitions col (lambda (p) (set-car! maxlcm (max (car maxlcm) (apply lcm (cons prevmaxlcm p)))))) (loop (car maxlcm) (- stepsleft 1))))))) (define (gen_partitions m colfun) (let recurse ((m m) (b m) (n 0) (partition (list))) (cond ((zero? m) (colfun partition)) (else (let loop ((i 1)) (recurse (- m i) i (+ 1 n) (cons i partition)) (if (< i (min b m)) (loop (+ 1 i)))))))) CROSSREFS Transpose: A225631. Cf. also A225632, A225634. Row 0: A000012, row 1: A000793, row 2: A225627, row 3: A225628. Cf. also A225629. Rows converge towards A003418, which is also the main diagonal of this array. See A225640 for a variant which uses a similar process, but where the "initial seed" in column n is n instead of 1. Sequence in context: A123320 A054123 A119269 * A129713 A096669 A096591 Adjacent sequences:  A225627 A225628 A225629 * A225631 A225632 A225633 KEYWORD nonn,tabl AUTHOR Antti Karttunen, May 13 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 20:16 EDT 2019. Contains 323426 sequences. (Running on oeis4.)