login
A225562
a(n) = smallest k such that n is the n-th largest divisor of k.
3
1, 4, 15, 20, 30, 48, 84, 160, 144, 210, 462, 240, 624, 1134, 480, 864, 1836, 720, 8740, 840, 1512, 2376, 4968, 2400, 3900, 3120, 4536, 4032, 15312, 2520, 17856, 5280, 6930, 10710, 15400, 7200, 47952, 17100, 12480, 7920, 72324, 9240, 43344, 16632, 20790
OFFSET
1,2
COMMENTS
The smallest row k such that n is the n-th entry in the triangle A056538 of divisors in reverse order.
Is a(n) defined for every n ? - Giovanni Resta, May 15 2013
LINKS
Alois P. Heinz and Zak Seidov, Table of n, a(n) for n = 1..1000 (first 200 terms from Alois P. Heinz)
EXAMPLE
a(6) = 48 because the divisors of 48 are {48, 24, 16, 12, 8, 6, 4, 3, 2, 1} and 6 is the 6th divisor of 48.
MAPLE
with(numtheory):
a:= proc(n) local k;
for k from n by n while tau(k)<n or
sort([divisors(k)[]], `>`)[n]<>n do od; k
end:
seq(a(n), n=1..50); # Alois P. Heinz, May 29 2013
MATHEMATICA
a[n_] := Block[{k = 1, d}, While[Length[d = Reverse@ Divisors@ k] < n || n != d[[n]], k++]; k]; Array[a, 20] (* Giovanni Resta, May 15 2013 *)
CROSSREFS
Sequence in context: A022133 A212921 A359958 * A301707 A100783 A170850
KEYWORD
nonn
AUTHOR
Irina Gerasimova, May 13 2013
EXTENSIONS
a(13)-a(45) from Giovanni Resta, May 15 2013
STATUS
approved