This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225524 G.f.: exp( Sum_{n>=1} (sigma(2*n) - sigma(n))*Lucas(n)*x^n/n ), where Lucas(n) = A000204(n) and sigma(n) = A000203(n) is the sum of divisors of n. 2
 1, 2, 8, 24, 66, 184, 488, 1248, 3136, 7776, 18780, 44880, 105896, 246124, 567008, 1293840, 2920626, 6545352, 14555388, 32115120, 70421792, 153451488, 332314512, 715843200, 1534016392, 3270661294, 6941489040, 14667591672, 30859685088, 64670865304, 135011595856, 280813639680 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Compare g.f. to theta_4(x) = exp( Sum_{n>=1} -(sigma(2*n)-sigma(n))*x^n/n ), where Jacobi theta_4(x) = 1 + 2*Sum_{n>=1} (-1)^n*x^(n^2). LINKS FORMULA G.f.: Product_{n>=1} (1 + Lucas(n)*x^n + (-x^2)^n) / (1 - Lucas(n)*x^n + (-x^2)^n). G.f.: 1/Product_{n>=1} (1 - Lucas(2*n-1)*x^(2*n-1) - x^(4*n-2))^2 * (1 - Lucas(2*n)*x^(2*n) + x^(4*n)). Logarithmic derivative equals A225525. EXAMPLE G.f.: A(x) = 1 + 2*x + 8*x^2 + 24*x^3 + 66*x^4 + 184*x^5 + 488*x^6 + 1248*x^7 +... The g.f. equals the product: A(x) = (1+x-x^2)/(1-x-x^2) * (1+3*x^2+x^4)/(1-3*x^2+x^4) * (1+4*x^3-x^6)/(1-4*x^3-x^6) * (1+7*x^4+x^8)/(1-7*x^4+x^8) * (1+11*x^5-x^10)/(1-11*x^5-x^10) *...* (1 + Lucas(n)*x^n + (-x^2)^n)/(1 - Lucas(n)*x^n + (-x^2)^n) *... PROG (PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)} {a(n)=polcoeff(prod(m=1, n, 1 + Lucas(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))/prod(m=1, n, 1 - Lucas(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n)), n)} for(n=0, 30, print1(a(n), ", ")) (PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)} {a(n)=polcoeff(1/prod(m=1, n\2+1, (1 - Lucas(2*m-1)*x^(2*m-1) - x^(4*m-2))^2*(1 - Lucas(2*m)*x^(2*m) + x^(4*m) +x*O(x^n))), n)} for(n=0, 30, print1(a(n), ", ")) (PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)} {a(n)=polcoeff(exp(sum(k=1, n, (sigma(2*k)-sigma(k))*Lucas(k)*x^k/k)+x*O(x^n)), n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A203850, A225525. Sequence in context: A294458 A229136 A261452 * A293006 A018045 A050242 Adjacent sequences:  A225521 A225522 A225523 * A225525 A225526 A225527 KEYWORD nonn AUTHOR Paul D. Hanna, May 09 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 00:55 EDT 2019. Contains 324217 sequences. (Running on oeis4.)