login
-10-Knödel numbers.
9

%I #17 Feb 16 2025 08:33:19

%S 4,6,8,10,12,14,24,26,30,50,56,102,110,150,152,182,276,330,350,494,

%T 550,650,770,962,1190,1230,1430,1550,1650,2550,2870,3050,3410,3752,

%U 3770,4510,4550,5270,6150,6650,6710,9230,9350,10010,10850,11526,12710,12950,15950

%N -10-Knödel numbers.

%C Extension of k-Knödel numbers to k negative, in this case equal to -10. Composite numbers n > 0 such that if 1 < a < n and gcd(n,a) = 1 then a^(n+10) = 1 mod n.

%H Amiram Eldar, <a href="/A225514/b225514.txt">Table of n, a(n) for n = 1..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KnoedelNumbers.html">Knödel Numbers</a>

%p with(numtheory); ListA225514:=proc(q,k) local a,n,ok;

%p for n from 2 to q do if not isprime(n) then ok:=1; for a from 1 to n do

%p if gcd(a,n)=1 then if (a^(n-k)-1) mod n<>0 then ok:=0; break; fi; fi;

%p od; if ok=1 then print(n); fi; fi; od; end: ListA225514(10^6,-10);

%t Select[Range[10000], CompositeQ[#] && Divisible[# + 10, CarmichaelLambda[#]] &] (* _Amiram Eldar_, Mar 28 2019 *)

%Y Cf. A208728.

%Y Cf. A225506, A225507, A225508, A225509, A225510, A225511, A225512, A225513.

%K nonn,changed

%O 1,1

%A _Paolo P. Lava_, May 09 2013

%E More terms from _Amiram Eldar_, Mar 28 2019