login
A225509
-5-Knödel numbers.
9
15, 55, 75, 91, 175, 247, 275, 715, 775, 1275, 1435, 2275, 2635, 3075, 3355, 4615, 6355, 6475, 7975, 8827, 9139, 10075, 10675, 11275, 11935, 13515, 14555, 21775, 26455, 28975, 30415, 31675, 32395, 43615, 46075, 47275, 52195, 59755, 64255, 77275, 78403, 81055
OFFSET
1,1
COMMENTS
Extension of k-Knödel numbers to k negative, in this case equal to -5. Composite numbers n > 0 such that if 1 < a < n and gcd(n,a) = 1 then a^(n+5) = 1 mod n.
LINKS
Eric Weisstein's World of Mathematics, Knödel Numbers
MAPLE
with(numtheory); ListA225509:=proc(q, k) local a, n, ok;
for n from 2 to q do if not isprime(n) then ok:=1; for a from 1 to n do
if gcd(a, n)=1 then if (a^(n-k)-1) mod n<>0 then ok:=0; break; fi; fi;
od; if ok=1 then print(n); fi; fi; od; end: ListA225509(10^6, -5);
MATHEMATICA
Select[Range[10000], CompositeQ[#] && Divisible[# + 5, CarmichaelLambda[#]] &] (* Amiram Eldar, Mar 28 2019 *)
KEYWORD
nonn
AUTHOR
Paolo P. Lava, May 09 2013
EXTENSIONS
More terms from Amiram Eldar, Mar 28 2019
STATUS
approved