login
A225497
Total number of rooted labeled trees over all forests on {1,2,...,n} in which one tree has been specially designated.
2
1, 6, 42, 380, 4320, 59682, 974848, 18423288, 396000000, 9548713790, 255409127424, 7507985556084, 240659872940032, 8355664160156250, 312437224148828160, 12519386633593104368, 535233488907211702272, 24320165501859426874998, 1170472960000000000000000, 59483046140261749951587180
OFFSET
1,2
COMMENTS
The expected number of trees in each forest approaches 5/2 as n gets large.
FORMULA
a(n) = Sum_{k=1..n} binomial(n,k)*n^(n-k)*k^2 = ((1 + 1/n)^n n^(1 + n) (-1 + 5 n))/(1 + n)^3.
a(n) = Sum_{k=1..n} A225465(n,k)*k.
EXAMPLE
a(2) = 6 because there are 6 trees in these forests on 2 nodes. The root node is on top and the designated tree is marked by '.
...1'... ...2'... ...1'..2... ...1..2'...
...| ... ...| ... ........... ...........
...2 ... ...1 ... ........... ...........
MATHEMATICA
Table[Sum[Binomial[n - 1, k - 1] n^(n - k) k^2, {k, 1, n}], {n, 1,
20}]
CROSSREFS
Sequence in context: A052589 A074107 A187121 * A336950 A304071 A052608
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, May 08 2013
STATUS
approved