

A225486


Maximal frequency depth for the partitions of n.


17



0, 2, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

See A225485 for the definition of frequency depth.
The frequency depth of an integer partition is the number of times one must take the multiset of multiplicities to reach (1). For example, the partition (32211) has frequency depth 5 because we have: (32211) > (221) > (21) > (11) > (2) > (1). Differs from A325282 at a(0) and a(1).  Gus Wiseman, Apr 19 2019


LINKS

Table of n, a(n) for n=1..87.


FORMULA

a(n) = number of terms in row n of the array in A225485, for n > 0.


EXAMPLE

(See A225485.)


MATHEMATICA

c[s_] := c[s] = Select[Table[Count[s, i], {i, 1, Max[s]}], # > 0 &]
f[s_] := f[s] = Drop[FixedPointList[c, s], 2]
t[s_] := t[s] = Length[f[s]]
u[n_] := u[n] = Table[t[Part[IntegerPartitions[n], k]],
{k, 1, Length[IntegerPartitions[n]]}];
Prepend[Table[Max[u[n]], {n, 2, 10}], 0]
(* second program *)
grw[q_]:=Join@@Table[ConstantArray[i, q[[Length[q]i+1]]], {i, Length[q]}];
Join@@MapIndexed[ConstantArray[#2[[1]]1, #1]&, Length[#]Last[#]&/@NestList[grw, {1, 1}, 6]] (* Gus Wiseman, Apr 19 2019 *)


CROSSREFS

Run lengths are A325258, i.e., first differences of Levine's sequence A011784.
Cf. A008284, A116608, A181819, A182850, A182857, A225485, A323014, A323023, A325239, A325242, A325254, A325282, A325283.
Sequence in context: A136528 A263252 A276334 * A325282 A305233 A130242
Adjacent sequences: A225483 A225484 A225485 * A225487 A225488 A225489


KEYWORD

nonn


AUTHOR

Clark Kimberling, May 08 2013


EXTENSIONS

More terms from Gus Wiseman, Apr 19 2019


STATUS

approved



