login
A225450
10-adic integer x such that x^7 == (2*(10^n-1)/9)+1 mod 10^n for all n.
1
7, 6, 3, 4, 0, 1, 9, 6, 8, 0, 7, 7, 0, 7, 5, 0, 6, 8, 6, 0, 5, 9, 2, 5, 6, 3, 2, 1, 3, 5, 3, 1, 8, 2, 2, 8, 6, 1, 1, 9, 8, 2, 1, 5, 3, 9, 6, 9, 8, 9, 9, 7, 1, 9, 7, 5, 6, 5, 1, 7, 0, 7, 6, 4, 4, 5, 8, 6, 4, 6, 8, 9, 2, 9, 8, 8, 3, 2, 0, 0, 1, 8, 2, 7, 9, 1, 5, 8, 6, 8, 2, 5, 6, 4, 6, 2, 9, 3, 5, 7
OFFSET
1,1
COMMENTS
This is the 10's complement of A225441.
LINKS
EXAMPLE
7^7 == 3 (mod 10).
67^7 == 23 (mod 100).
367^7 == 223 (mod 1000).
4367^7 == 2223 (mod 10000).
4367^7 == 22223 (mod 100000).
104367^7 == 222223 (mod 1000000).
MAPLE
op([1, 3], padic:-evalp(RootOf(x^7-7/9, x), 10, 202)); # Robert Israel, Feb 05 2019
PROG
(PARI) n=0; for(i=1, 100, m=(2*(10^i-1)/9)+1; for(x=0, 9, if(((n+(x*10^(i-1)))^7)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
CROSSREFS
Cf. A225441.
Sequence in context: A019908 A021135 A198374 * A238239 A371934 A199437
KEYWORD
nonn,base
AUTHOR
Aswini Vaidyanathan, May 11 2013
STATUS
approved