login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A225439 Expansion of 3*x/((1-(1-9*x)^(1/3))*(1-9*x)^(2/3)). 3

%I

%S 1,3,21,162,1305,10773,90342,765936,6546177,56293380,486451251,

%T 4220183916,36731240910,320571837810,2804298945840,24580601689752,

%U 215832643307217,1898042178972285,16714070686567620,147360883148636850,1300623629653125855

%N Expansion of 3*x/((1-(1-9*x)^(1/3))*(1-9*x)^(2/3)).

%H Vincenzo Librandi, <a href="/A225439/b225439.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) = sum(k=0..n, C(k,n-k)*3^(k)*(-1)^(n-k)*C(n+k-1,n-1)), n>0, a(0)=1.

%F G.f.: A(x) = 1 + x*B'(x)/B(x), where B(x) = (1-(1-9*x)^(1/3))/(3*x) is the g.f. of A097188.

%F n*(n-1)*a(n) = 18*(n-1)^2*a(n-1) - 9*(3*n-5)*(3*n-4)*a(n-2). - _Vaclav Kotesovec_, May 22 2013

%F a(n) ~ 3^(2*n-1)/(GAMMA(2/3)*n^(1/3)). - _Vaclav Kotesovec_, May 22 2013

%F a(n) = (Gamma(n+2/3)/Gamma(2/3)+Gamma(n+1/3)/(Gamma(1/3)))*3^(2*n-1)/ Gamma(n+1)) for n > 0. - _Peter Luschny_, Jul 05 2013

%p A225439 := n -> `if`(n=0,1,(GAMMA(n+2/3)/GAMMA(2/3)+GAMMA(n+1/3)/(GAMMA(1/3)))* 3^(2*n-1)/GAMMA(n+1)): seq(A225439(i),i=0..20); # _Peter Luschny_, Jul 05 2013

%t Table[Sum[Binomial[k,n-k]*3^k*(-1)^(n-k)*Binomial[n+k-1,n-1], {k,0,n}], {n,0,20}] (* _Vaclav Kotesovec_, May 22 2013 *)

%o (Maxima) a(n):=if n=0 then 1 else sum(binomial(k,n-k)*3^(k)*(-1)^(n-k)*binomial(n+k-1,n-1),k,0,n);

%o (PARI) x='x+O('x^66); Vec(3*x/((1-(1-9*x)^(1/3))*(1-9*x)^(2/3))) \\ _Joerg Arndt_, May 08 2013

%o (PARI) {a(n)=local(B=(1-(1-9*x+x^2*O(x^n))^(1/3))/(3*x));polcoeff(1+x*B'/B, n, x)} \\ _Paul D. Hanna_, May 08 2013

%Y Cf. A025748, A097188.

%K nonn

%O 0,2

%A _Vladimir Kruchinin_, May 08 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 08:39 EST 2019. Contains 329217 sequences. (Running on oeis4.)