login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Denominators of convergents to the general continued fraction 1/(1 + 2/(1 + 3/(1 + 4/(1+ ...))))
4

%I #37 Sep 12 2022 22:49:06

%S 1,3,3,9,12,39,123,87,771,1473,11427,46779,19533,212559,1890093,

%T 8691981,1570137,9863961,486463449,2459255649,6337494039,16694653089,

%U 7166066763,51605000913,2729643372111,7738039298811,89176449644619,104501330075607,1554311845035993,361227369257943

%N Denominators of convergents to the general continued fraction 1/(1 + 2/(1 + 3/(1 + 4/(1+ ...))))

%C 1

%H Seiichi Manyama, <a href="/A225436/b225436.txt">Table of n, a(n) for n = 1..843</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ContinuedFractionConstants.html">Continued Fraction Constants</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GeneralizedContinuedFraction.html">Generalized Continued Fraction</a>

%F E.g.f: (1/2)*(2+e^((1/2)*(1+z)^2)*sqrt(2*Pi)*(1+z)*(-erf(1/sqrt(2))+erf((1+z)/sqrt(2)))).

%F Limit_{n->oo} A225435(n)/a(n) = sqrt(2/(e*Pi))/erfc(1/sqrt(2))-1 = A111129.

%e 1, 1/3, 2/3, 4/9, 7/12, 19/39, ... = A225435(n)/A225436(n).

%t Denominator[Table[ContinuedFractionK[k, 1, {k, 1, n}], {n, 30}]]

%Y Cf. A225435 (numerators).

%Y Cf. A111129 (decimal digits of infinite c.f.).

%Y Related to A000932.

%K nonn,frac

%O 1,2

%A _Eric W. Weisstein_, May 07 2013