

A225232


The number of FO3C2 moves required to restore a packet of n playing cards to its original state (order and orientation).


2



2, 4, 4, 12, 6, 24, 8, 40, 10, 60, 12, 84, 14, 112, 16, 144, 18, 180, 20, 220, 22, 264, 24, 312, 26, 364, 28, 420, 30, 480, 32, 544, 34, 612, 36, 684, 38, 760, 40, 840, 42, 924, 44, 1012, 46, 1104, 48, 1200, 50, 1300, 52, 1404, 54, 1512, 56, 1624, 58, 1740, 60, 1860, 62, 1984
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

3,1


COMMENTS

Each FO3C2 move Flips Over the top 3 cards as a unit and then Cuts 2 cards from the top to bottom.  Mulcahy


REFERENCES

Colm Mulcahy, Mathematical Card Magic: FiftyTwo New Effects, A K Peters, 2013, chapter 9.


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 3..1000
Index entries for linear recurrences with constant coefficients, signature (0,3,0,3,0,1).


FORMULA

Assume n >=3. For odd n we have a(n) = n1 and for even n we have a(n) = (n2)n/2. Equivalently, a(2k+1) = 2k and a(2k) = 2k(k1).
a(n) = 3*a(n2)3*a(n4)+a(n6).  Colin Barker, Jun 04 2014
G.f.: 2*x^3*(x^22*x1) / ((x1)^3*(x+1)^3).  Colin Barker, Jun 04 2014


PROG

(PARI) a(n)={
if(n<6, return(if(n>3, 4, 2)));
n;
my(deck=vector(n, i, i), original=deck, steps);
while(1,
steps+=2;
deck=concat(deck[5..n], [deck[2], deck[1], deck[4], deck[3]]);
if(deck==original, return(steps))
)
}; \\ Charles R Greathouse IV, May 03 2013
(PARI) a(n)=if(n%2, n1, n*(n2)/2) \\ Charles R Greathouse IV, May 06 2013
(PARI) Vec(2*x^3*(x^22*x1)/((x1)^3*(x+1)^3) + O(x^100)) \\ Colin Barker, Jun 04 2014


CROSSREFS

The even numbered terms are A046092.
Cf. A106232.
Sequence in context: A186992 A186993 A186973 * A326824 A319210 A292303
Adjacent sequences: A225229 A225230 A225231 * A225233 A225234 A225235


KEYWORD

nonn,easy


AUTHOR

Colm Mulcahy, May 03 2013


EXTENSIONS

a(10), a(12)a(64) from Charles R Greathouse IV, May 03 2013


STATUS

approved



