OFFSET
1,1
COMMENTS
Naslund proves that this sequence (and related ones) is infinite and gives an asymptotic upper bound.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Eric Naslund, Bounds for the tail distribution of the sum of digits of prime numbers, arXiv:1211.2455 [math.NT], 2012.
Eric Naslund, The tail distribution of the sum of digits of prime numbers, Uniform Distribution Theory 10 (2015), no. 1, 63-68. See the abstract and p. 64.
MATHEMATICA
okQ[n_] := Module[{b = IntegerDigits[n, 2]}, Count[b, 1] > 2*Count[b, 0]]; Select[Prime[Range[200]], okQ] (* T. D. Noe, May 02 2013 *)
PROG
(PARI) has(n)=3*hammingweight(n)>2*#binary(n)
select(has, primes(500))
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Charles R Greathouse IV, May 02 2013
STATUS
approved