The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225209 a(n) = (392*16^n -1620*8^n +1890*4^n -767)/105. 1
 1, 249, 8537, 186073, 3427545, 58664153, 970097881, 15776875737, 254486643929, 4088295982297, 65545039643865, 1049779971687641, 16804957869966553, 268947166998693081, 4303697458594972889, 68863501862374868185 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Starting at n=1, a cube has an edge=2^(n+1)-3. The beginning cube has a value of 1 and is surrounded by 2^n layers of cubes each valued at 2^n. The sum of all cubes with values of 2^n is a(n). Indices of primes in this sequence: 3, 10, 12, 21, 37, 70, 102, 201, 961, 1854, .... LINKS G. C. Greubel, Table of n, a(n) for n = 1..825 Index entries for linear recurrences with constant coefficients, signature (29,-252,736,-512). FORMULA a(n) = 29*a(n-1) - 252*a(n-2) + 736*a(n-3) - 512*a(n-4). a(n) = a(n-1) + 7*2^(4*n-1) - 27*2^(3*n-1) + 27*2^(2*n-1), for n>0. G.f. x*(1 +220*x +1568*x^2 +512*x^3)/( (1-x)*(1-4*x)*(1-8*x)*(1-16*x) ). - R. J. Mathar, May 09 2013 a(n) = a(n-1) +2^(n-1)*(A036563(n+1)^3 -A036563(n)^3). - R. J. Mathar, May 18 2013 EXAMPLE The first cubes has value 1=a(1). The second cube has 2 layers of cubes each valued at 2 surrounding the cube of value 1 to give (5^3-1)*2+1=249=a(2). Next surround by 2^2 layers of cubes each valued at 2^2: (13^3-5^3)*4+249=8537=a(3). Finally, surround by 2^3 layers of cubes each of value 2^3 to get (29^3-13^3)*8 + 8537 = 186073 = a(4). MAPLE seq( (392*2^(4*n) -1620*2^(3*n) +1890*2^(2*n) -767)/105, n=1..20); # G. C. Greubel, Dec 31 2019 MATHEMATICA LinearRecurrence[{29, -252, 736, -512}, {1, 249, 8537, 186073}, 20] (* Harvey P. Dale, Apr 22 2018 *) PROG (PARI) vector(20, n, (392*2^(4*n) -1620*2^(3*n) +1890*2^(2*n) -767)/105) \\ G. C. Greubel, Dec 31 2019 (Magma) [(392*2^(4*n) -1620*2^(3*n) +1890*2^(2*n) -767)/105: n in [1..20]]; // G. C. Greubel, Dec 31 2019 (Sage) [(392*2^(4*n) -1620*2^(3*n) +1890*2^(2*n) -767)/105 for n in (1..20)] # G. C. Greubel, Dec 31 2019 (GAP) List([1..20], n-> (392*2^(4*n) -1620*2^(3*n) +1890*2^(2*n) -767)/105); # G. C. Greubel, Dec 31 2019 CROSSREFS Sequence in context: A045254 A197349 A197400 * A197363 A069154 A045169 Adjacent sequences: A225206 A225207 A225208 * A225210 A225211 A225212 KEYWORD nonn,easy AUTHOR J. M. Bergot, May 01 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 21:15 EST 2022. Contains 358362 sequences. (Running on oeis4.)