login
A225185
Primes p which do not have a primitive root that divides p+1.
2
7, 23, 31, 43, 47, 71, 73, 79, 103, 127, 151, 157, 167, 191, 193, 199, 223, 239, 241, 263, 271, 277, 283, 311, 313, 331, 337, 359, 367, 383, 397, 409, 431, 439, 457, 463, 479, 487, 503, 571, 577, 599, 607, 631, 647, 673, 691, 719, 727, 733, 739, 743, 751, 811, 823, 839, 863, 887, 911, 919, 967, 983, 991, 997
OFFSET
1,1
LINKS
Arto Lepistö, Francesco Pappalardi and Kalle Saari, Transposition Invariant Words, Theoret. Comput. Sci., Vol. 380, No. 3 (2007), pp. 377-387.
EXAMPLE
The primitive roots modulo 97 are 5, 7, 10, 13, 14, 15, 17, 21, 23, 26, 29, 37, 38, 39, ..., and 7 divides 98, so 97 is not a term of this sequence.
MATHEMATICA
q[n_] := PrimeQ[n] && AllTrue[PrimitiveRootList[n], ! Divisible[n + 1, #] &]; Select[Range[1000], q] (* Amiram Eldar, Oct 07 2021 *)
Select[Prime[Range[200]], NoneTrue[(#+1)/PrimitiveRootList[#], IntegerQ]&] (* Harvey P. Dale, Sep 08 2024 *)
PROG
(PARI) forprime(p=2, 1000, i=0; fordiv(p+1, X, if(znorder(Mod(X, p))==eulerphi(p), i=1)); if(i==0, print1(p", "))) \\ V. Raman, May 04 2012
(Magma) [p: p in PrimesUpTo(1000) | not exists{r: r in [1..p-1] | IsPrimitive(r, p) and IsZero((p+1) mod r)}]; // Bruno Berselli, May 10 2013
CROSSREFS
Cf. A060749, A225184 (complement), A001122.
Sequence in context: A044449 A095087 A144517 * A091531 A036259 A004628
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 04 2013
EXTENSIONS
More terms from V. Raman, May 04 2013
STATUS
approved