login
A225165
Denominators of the sequence s(n) of the sum resp. product of fractions f(n) defined recursively by f(1) = 6/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.
1
1, 5, 155, 176855, 265770796655, 679134511201261085170655, 4943777738415359153962876938905400001585992709055
OFFSET
1,2
COMMENTS
Numerators of the sequence s(n) of the sum resp. product of fractions f(n) is A165424(n+2), hence sum(A165424(i+1)/A225158(i),i=1..n) = product(A165424(i+1)/A225158(i),i=1..n) = A165424(n+2)/a(n) = A173501(n+2)/a(n).
FORMULA
a(n) = 6^(2^(n-1))*b(n) where b(n)=b(n-1)-b(n-1)^2 with b(1)=1/6.
EXAMPLE
f(n) = 6, 6/5, 36/31, 1296/1141, ...
6 + 6/5 = 6 * 6/5 = 36/5; 6 + 6/5 + 36/31 = 6 * 6/5 * 36/31 = 1296/155; ...
s(n) = 1/b(n) = 6, 36/5, 1296/155, ...
MAPLE
b:=proc(n) option remember; b(n-1)-b(n-1)^2; end:
b(1):=1/6;
a:=n->6^(2^(n-1))*b(n);
seq(a(i), i=1..8);
CROSSREFS
KEYWORD
nonn
AUTHOR
Martin Renner, Apr 30 2013
STATUS
approved