login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A225144 a(n) = Sum_{i=n..2*n} i^2*(-1)^i. 5
0, 3, 11, 18, 42, 45, 93, 84, 164, 135, 255, 198, 366, 273, 497, 360, 648, 459, 819, 570, 1010, 693, 1221, 828, 1452, 975, 1703, 1134, 1974, 1305, 2265, 1488, 2576, 1683, 2907, 1890, 3258, 2109, 3629, 2340, 4020, 2583, 4431, 2838, 4862, 3105, 5313, 3384 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

3 and 11 are the only primes in the sequence.

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).

FORMULA

G.f.: x*(3+11*x+9*x^2+9*x^3)/(1-x^2)^3.

a(n) = 3*a(n-2)-3*a(n-4)+a(n-6).

a(n) = n*(4*n+(n-1)*(-1)^n+2)/2.

a(n) = A000217(2n) +(-1)^n*A000217(n-1) with A000217(-1)=0.

a(2n-1) = A094159(n) for n>0; a(2n) = A055437(n) for A055437(0)=0.

EXAMPLE

a(6) = 6^2-7^2+8^2-9^2+10^2-11^2+12^2 = 93.

a(7) = -7^2+8^2-9^2+10^2-11^2+12^2-13^2+14^2 = 84.

MATHEMATICA

Table[Sum[i^2 (-1)^i, {i, n, 2 n}], {n, 0, 50}]

PROG

(MAGMA) [&+[i^2*(-1)^i: i in [n..2*n]]: n in [0..50]];

CROSSREFS

Cf. A050409: sum(i^2, i=n..2n); A064455: sum(i*(-1)^i, i=n..2n); A065679: A000217(n)+(-1)^n*A000217(n-1); A089594: sum(i^2*(-1)^i, i=1..n).

Sequence in context: A127995 A119141 A303520 * A228470 A246453 A117769

Adjacent sequences:  A225141 A225142 A225143 * A225145 A225146 A225147

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Jun 06 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 20 06:10 EDT 2018. Contains 304313 sequences. (Running on oeis4.)