This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225101 Numerator of (2^n - 2)/n. 2
 0, 1, 2, 7, 6, 31, 18, 127, 170, 511, 186, 2047, 630, 8191, 10922, 32767, 7710, 131071, 27594, 524287, 699050, 2097151, 364722, 8388607, 6710886, 33554431, 44739242, 19173961, 18512790, 536870911, 69273666, 2147483647, 2863311530, 8589934591, 34359738366, 34359738367, 3714566310 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS That (2^n - 2)/n is an integer when n is prime can easily be proved as a simple consequence of Fermat's little theorem. It was believed long ago that (2^n - 2)/n is an integer only when n = 1 or a prime. In 1819, Frédéric Sarrus found the smallest counterexample, 341; these pseudoprimes are now sometimes called "Sarrus numbers" (A001567). REFERENCES Alkiviadis G. Akritas, Elements of Computer Algebra With Application. New York: John Wiley & Sons (1989): 66. George P. Loweke, The Lore of Prime Numbers. New York: Vantage Press, 1982, p. 22. LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Chinese Hypothesis EXAMPLE a(4) = 7 because (2^4 - 2)/4 = 7/2. a(5) = 6 because (2^5 - 2)/5 = 6. a(6) = 31 because (2^6 - 2)/6 = 31/3. MAPLE A225101:=n->numer((2^n-2)/n): seq(A225101(n), n=1..50); # Wesley Ivan Hurt, Nov 10 2014 MATHEMATICA Table[Numerator[(2^n - 2)/n], {n, 50}] PROG (PARI) vector(100, n, numerator((2^n - 2)/n)) \\ Colin Barker, Nov 09 2014 (MAGMA) [Numerator((2^n - 2)/n): n in  [1..60]]; // Vincenzo Librandi, Nov 09 2014 CROSSREFS Cf. A064535, A159353 (denominators). Sequence in context: A072985 A082187 A211368 * A286800 A323722 A021365 Adjacent sequences:  A225098 A225099 A225100 * A225102 A225103 A225104 KEYWORD easy,nonn,frac AUTHOR Alonso del Arte, Apr 28 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 17 17:14 EDT 2019. Contains 325107 sequences. (Running on oeis4.)